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Functional Equations for Circle Homeomorphisms with 
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The investigation of a scaling limit for mappings of the circle to itself with 
golden ratio rotation number leads to a pair of functional equations with at least 
a formal resemblance to the functional equation using the accumulation of 
period-doubling bifurcations. We discuss the general theory of these functional 
equations, assuming that solutions exist. 
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1. I N T R O D U C T I O N  

The inves t igat ion of a "scal ing l imi t"  for i terates of mapp ings  of the circle 

with ro ta t ion  n u m b e r  equal  to the golden ra t io  ( ~ -  - 1 ) /2  and  with a 
cri t ical  po in t  leads  to the func t iona l  equat ions  

g(X) ~ -  O~2g(OL--2g(oL--lx)) 
(A1) 

(B) 

(The analysis  leading  to these equat ions  will be out l ined  in Sect ion 2.) Here,  
a is a n u m b e r  and  g (x )  a funct ion  def ined  on some interval ;  bo th  a and  
g(x )  are  to be  de te rmined .  W e  are going to cons ider  only  solut ions with 
(i) a < - 1, (ii) g(x )  a strictly decreas ing  funct ion  of x, a n d  (iii) g(0)  = 1. 
The  cond i t ion  g(0)  = 1 is s imply a normal iza t ion ;  if ~ (x )  is a solut ion of 
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either equation with g(0) v a 0, then 

g(x) = ( g ( 0 ) ) - '  g( g(O) . x) 

is also a solution (with the same a) satisfying g(0) = 1. We stress that the 
condition that g is strictly decreasing means 

g(x  0 < g(x2) whenever x 1 > x 2 

it does not rule out the existence of isolated points where g has vanishing 
derivative. 

The analysis leading to the equations (A1) and (B) suggests that there 
should exist a function g(x) which satisfies both of these equations. Further- 
more, either of these equations, by itself, can be solved numerically, and the 
solution found appears, within computational error, to satisfy the other 
equation "automatically." These considerations lead to the suspicion that, 
under appropriate conditions, (A1) and (B) might be equivalent. A major 
step in the direction of proving this was made by Nauenberg, (4) who 
showed that an analytic solution of (A1) which satisfies in addition 

must also satisfy (B). We will prove in Section 4 that, under mild differen- 
tiability and domain conditions, a solution of (B) also satisfies (A1). Note 
that condition (A2) follows immediately from (B) by putting x = 0 and 
using g(0) = 1. Thus, schematically, (A1) and (A2) together are equivalent 
to (B). From now on, we will write (A) to denote the combination of conditions 
(A1) and (A2). 

It may be that (A2) is actually a consequence of (A1). It is not difficult 
to deduce from (A1) that g2(a-2)= a -2, i.e., that 0~ - 2  is either a fixed 
point for g or a periodic point of period 2. The only solutions to (A1) (and 
the subsidiary conditions above) found so far do satisfy (A2), but, so far as 
I know, no general proof has been given. 

Numerical computation of a solution to (AI) or (B) produces a 
function defined on a finite interval (or a bounded domain in the complex 
plane). In the analogous case of the functional equation for period- 
doubling (see, e.g., Collet and Eckmann(~ the functional equation itself 
gives immediately an extension of the solution to the whole real axis. We 
investigate in Section 3 the problem of extending solutions of (B) defined 
on a finite interval to a larger set. What we show is that any solution 
defined on an interval of finite but reasonable size can be extended 
(uniquely) either to a solution defined on the whole real axis or to one 
defined on a finite interval which goes to infinity at both ends of that 
interval. The extended solution is as regular as the one we started from. 
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We also show that any solution arising as a scaling limit of a circle 
mapping with rotation number (~- - 1)/2 is extendable to the whole real 
axis. 

Section 5 is also devoted to an extension argument. As Feigenbaum et 
al. (2) have remarked, equation (A)--in contrast to (B)--makes sense for 
functions defined only on the interval [0, 1]. We show that any solution of 
(A) on [0, 1] can be extended to a function defined on a considerably larger 
interval and satisfying both (A) and (B). (The extension theorem for 
solutions of (B) can then be used to continue this solution still further.) The 
arguments used in this section are straightforward adaptations of ideas in 
Nauenberg(4); the main interest of the argument we give is that it separates 
clearly the algebraic and analytic elements in Nauenberg's argument. 

2. THE SCALING LIMIT FOR CIRCLE MAPPINGS 

In this section we describe some fine structure in the behavior of 
certain mappings of the circle to itself. Almost nothing in this section is 
new; we will summarize, from a slightly different point of view, the results 
of Feigenbaum, Kadanoff, and Shenker. (2~ An alternative, and more or less 
equivalent, development has been given by Ostlund, Rand, Sethna, and 
Siggia. (5) 

Let f ( x )  denote a continuous strictly increasing mapping of the real 
line R to itself satisfying 

f ( x  + 1) = f ( x )  + 1 (2.1) 

By passage to quotients, such an f induces a one-one continuous mapping 
of the circle--represented as R / Z - - o n t o  itself, and any such mapping 
which is orientation preserving (increasing) is induced by an f which is 
unique up to an additive integer constant. 

If f is as above, then 

f ' ( x )  - x 
lira 

n---> oo n 

exists for all x and is independent of x. This limit is called the rotation 
number of f;  we will denote it by 0(f). 

The mappings of the circle we want to discuss will be ones induced by 
f ' s  with rotation number (~/5 - 1)/2, the golden ratio. For the remainder of 
this paper, the symbol o will be reserved to denote (~/5 - 1)/2. We need 
some preliminaries on the relation between o and the Fibonacci sequence, 
i.e., the sequence (Qn) of integers satisfying 

Q,+I= Q,, + Q,_I,  Qo=O, Q ,=  I (2.2) 
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A well-known but relatively crude relation is 

Q , - i  
lim - o 

This relation is sharpened considerably by the identity 

Q. . o -  O ._ ,  = ( -  l ) ' - ' o "  (2.3) 

which can easily be proved by solving the recursion relation defining the 
Fibonacci sequence to get the explicit formula 

Q. --~ (0-""{- (-- l)n+lon)/(O-I "[- O) 

We give the identity (2.3) a "dynamical" interpretation as follows: Let 
f ( x )  have rotation number o. It follows at once from the definition of 
rotation number that 

f ( . ) (x )  =~ fQ~ -- Q ._ ,  

has rotation number 

Qo. o - Q . - ,  = ( -  1) n-*~ 

For n large, the rotation number of f(,) is small, so we might expect 

f ( , ) (x )  --) x as n ~ oc 

We are going to look in detail at the limiting behavior of the f{,,)'s for 
functions f which are smooth but which, although strictly increasing, have 
zero as a critical point: 

f'(O) = 0 

and hence whose inverses are not smooth. A typical example is 

f ( x )  = x + % - 2@ sin(2~rx) 

with the constant % adjusted to make the rotation number equal to o. We 
want to concentrate particularly on the behavior near the critical point at 
zero, and we therefore magnify as follows: Let 

= h . ) ( 0 ) - '  

and 

f , ( x )  = a('-l)f(n)(X/Og(n--l)) 

(We have chosen to rescale by a ( ' -  1) rather than a (') because this leads to 
slightly simpler formulas later on.) In the situation we want to look at, the 
a( , -1)  will tend to infinity, so the large-n behavior of f , ' s  on a fixed interval 
will reflect the behavior of f(,) and hence fO" very near to zero. 
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As we have already remarked, f(,) has rotation number ( - 1 ) n - l a  ". 
This implies that 

f(n)(x) > x everywhere for n odd 

f ( , ) ( x )  < x everywhere for n even 

and in particular that a (') has sign ( -  1) ' -  i. We also note for use later that 

f~ (x) < x for all n, x (2.4) 

Numerical experiments suggest that the following phenomenology is 
common for mappings f of the sort we are considering: 

(i) The sequence of ratios a ~+ O / a ( ' )  approaches a limit a < - 1 (so 
that, roughly, a (~) ~ a ' ) .  

(ii) The sequence of functions f ,  approaches a limit f* .  
(iii) The limiting ratio a and function f*  are universal, i.e., do not 

seem to depend on what f we start with in the class we are considering. 
Note that the condi t ionf (x  + l) = f ( x )  imposed on fwi l l  (presumably) 

not be satisfied by f*.  The functions f ,  satisfy 

f , ( x  + a ("-l)) = f , ( x )  + a ("-1) 

and, since the a (" l) go to infinity, the condition becomes empty in the 
limit. 

Independent of questions of universality, some striking consequences 
follow just from the convergence of the sequence f ,  derived from a single f 
with rotation number o. Suppose we have such an f. Write 

a n = o l ( n ) / o l ( n - ' )  

Then, first of all, 

L ( 0 )  = ,<-%(0)= = 

From 

and so 

it follows easily that 

. - '  = l i m  f~(O) = f*(O) 

Q,+I  = Qn + Qn-1 

f ( . )  = uQ" - Q, 1 

f ( x  + l ) = f ( x )  + l 

f ( . + , )  = f ( . ) f ( o - , )  = 

Rescaling by a ('~ and reorganizing in a straightforward way we get 

= (2.5A) 
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from the first equality and 

f ,+l(X) = % . % _ l f , _ , ( a Z l l f , ( a ~ l x ) )  (2.5B) 

from the second. Taking limits as n --) oc we find 

f * ( x )  = e~f*(e~f*(a 2x)) (2.6A) 

f * ( x )  = a2f*(a-  ~f*(a-2x)) (2.6B) 

To summarize: Using nothing but the assumption that appropriately 
magnified versions of f Q " ( x ) -  Q,_,  converge to a limit f*,  we have shown 
that f*  satisfies two functional equations. Since solutions of these functional 
equations can be expected to be scarce, we get a simple intuitive explana- 
tion for "universality," i.e., the fact that many different f ' s  produce the 
same f*. Renormalization group ideas lead to an elaboration of this simple 
explanation for which we refer to Feigenbaum et al., (2) MacKay, (3) or 
Ostlund et al. (5) 

To get the functional equations (A1) and (B) as given in Section l, we 
write 

g(x )  =-- a f*(x)  

and rewrite (2.6A) and (2.6B) accordingly. Since a - !  = f*(0), the normal- 
ization condition g(0) = 1 is automatically satisfied. Since eachf ,  is increas- 
ing, f* will be an increasing function so g(x)  will be a decreasing function. 
(Recall that a is negative and larger than one in magnitude.) We observed 
above that f , (x)  < x for all n,x; hence, 

at all points x where 

f * ( x )  <<. x and g(x )  > ax (2.7) 

f * ( x )  = lim f~(x) 
n ~ o r  

The purpose of this paper is to investigate the properties of solutions of 
the equations (AI) and (B), assuming that the solutions exist. It may 
nevertheless be useful to sketch briefly the state of our knowledge about 
existence of analytic solutions. There is, first of all, a "trivial" solution 

g(x )  = 1 - x / o ,  a = - 1/o  

This solution is what is obtained by taking the scaling limit described above 
for a smooth mapping with rotation number o and derivative strictly 
positive everywhere. What we really want is a solution with g ' (0)= 0. 
Monotonicity of g then implies g"(O)= 0, and it is natural to seek a 
solution with g'"(0) :~ 0. Assuming this, it is straightforward to show from 
either functional equation that g(J)(0)= 0 for all j which are not multiples 
of 3, i.e., that g is an analytic function of x 3. 
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The usual way to solve (A1) or (B) numerically is to (i) rewrite the 
functional equation in terms of the variable x 3, (ii) truncate the functional 
equation to a finite number  of conditions either by requiring only that it 
hold at a finite set of points or by requiring only that it hold to finite order 
at some point, (iii) use Newton's  method to seek a polynomial satisfying 
the resulting finite set of nonlinear equations. 

With a little care, Newton's  method can be made to converge, and the 
result obtained always seems to be the same (i.e., independent of which 
equation is being solved and--wi thin  l imits--  of the truncation procedure 
used.) 

These numerical results strongly suggest that there is function defined 
and analytic on a substantial interval of the real axis, satisfying (A) and 
(B), with 

a ~ - 1.2885745 . . . 

and with a second-order critical point at 0. It appears to be feasible to give 
a computer-assisted proof that this solution does in fact exist, and there are 
currently in progress at least two attempts to construct such a proof, one by 
D. Rand and B. Mestel, the other by R. de la Llave and the author. 

3. EXTENSION OF SOLUTIONS OF (B) 

We are going to prove in this section the existence of a maximal 
extension of a given solution of (B). We have first to specify carefully what 
we mean by a solution. We will, as always, only be concerned with 
continuous, monotone-decreasing solutions with a < -  1. Let g(x) be a 
function defined on an interval I. For the sake of concreteness, we will 
write the formulas as if I is a closed interval [a, b], but open and half-open 
intervals are also allowed. The domain I '  of the function a 2 g ( a - 2 g ( a -  ix)), 
i.e., the set of numbers x such that 

a < o/-lx ~ b and a <~ a-2g(a- lx)  <. b 

is either an interval or empty. For g to be a solution to (B), it is necessary at 
the very least that the following be true: 

(1) I N I' contains more than one point. 
(2) g(x) and a2g(a-2g(a-lx)) agree on I A I'. 
Condition (1) implies that 0 is in I,  so the normalization condition 

g (0 ) - -  1 makes sense. For our purposes, we add the following to these 
minimal conditions: 

(3) The interval of definition I -- [a, b] is not too asymmetric: 

, Ibl  

(4) g(b) < O. 
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We will explain below our reasons for imposing these conditions. First, 
however, we note the following consequence: 

Proposition 3.1. With the above assumptions, the equation 

= ,x)) (B) 

holds for all x ~ [a, b]. 

In other words, [a, b] is a self-defining interval for (B). 

Proof. We define 

q(x)  =-- a - 2 g ( ~ - ' x )  

so (B) reads 

g(x)  =  2g(q(x)) 

Note that q(x) is increasing. Also, let I N I '  = [a", b"]. What we want to 
show is that a" = a, b" = b. 

From (3), q(x) is defined on all of I, and from this it follows that either 
b" = b or q(b") = b. If b" < b, then 

g(b") = a2g(q(b")) = a2g(b) 

But g(b) < 0 by (4), and a 2 > 1, so it follows that g(b") < g(b). Since g(x) 
is decreasing and b" < b, this is impossible, and so b" = b. [t can be shown 
in a similar way that a" = a [using, this time, the fact that g(a) >1 g(O) = 
1>0]. B 

We can now explain why we impose (3). Suppose, for example, that 
g(x) is defined on [a,b] with la[ > la[ Ib[, (i.e., with a < ab) and satisfies (B) 
on the interval [a", b"] where both sides are defined. The argument just 
given can readily be adapted to show that a" = ab and that q(a") > a". 
Thus, the values taken on by q(x) for a" <~ x <~ b" are all to the right of ab. 
Hence the values of g(x) for a < x < ab do not in any way enter into Eq. 
(B), so g(x) can be changed arbitrarily on that interval and remain a 
solution of (B). Condition (3) avoids this arbitrariness. Note that, in the 
case considered, we could simply replace a by ab; the restricted g would 
then satisfy (3). 

We impose (4) simply because the functional equation has the form 

g(x)  =  2g(q(x)) 

and thus offers no straightforward way to determine any negative values of 
g starting from positive values only. 

Proposition 3.2. A solution of (B) satisfying conditions (1)-(4) 
above can be extended uniquely to a function defined and satisfying (B) 
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everywhere on an interval ( a ~ , b ~ ) w i t h  either 

a~ = - o  e, b~ = o e  

o r  

lim g ( x )  = + o  e, lim g ( x )  = - o e  
xSa~ x~b~ 

Proof. 
with 

From 

From g(0) = l, g(b)  < 0, it follows that there is an x 0 in [0, b] 

g(  Xo) = 0 

g ( x )  = 

and the fact that g is decreasing, it follows that 

q ( x ) < x  if x > x  o 
(3.1) 

q ( x ) > x  if x < x  0 

We will use these inequalities repeatedly. 
Consider now the functional equation written in the form 

g ( x )  =  2g(q(x)) (3.2) 
We will use the right-hand side of this equation to extend g and so want to 
show that its domain of definition, which we denote by [a~,bl], properly 
contains the original domain [a, b] of g. This is immediate: Since q(x )  is 
defined on the interval [~b, ~a] which properly contains [a, b], and, by (3.1), 

q(a)  > a, q (b)  < b 

We thus use the functional equation to extend g to [a l, bl]; the extended g 
is still strictly decreasing and is as regular as the unextended g. The 
functional equation holds, by construction, everywhere on [a I , bl], and it is 
easy to check that condition (3) is preserved, i.e., that 

lall 

Note that (i) if b I v ~ aa then q(bl)  = b and (ii) if a I ~ ab then q(al)  = a. 
The extension process can be repeated to generate a solution of (B) 

defined on an increasing sequence of intervals 

[a ,b]  c [ a l , b l ]  C [ a 2 , b 2 ]  c . . . 

and hence defined on (ao~, bo~) where 

a~  = ,-,~lim a , ,  b~ = l i r n  b, 

It is clear from the construction that the extension is unique. 
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Since 

la.[ la]-I  < ]~-~[ < la[ (3.3) 

both a~ and boo are finite if one of them is. To complete the proof of the 
proposition, we need only show that, if a~ and b~ are finite, then 

lim g ( x ) =  + ~ ,  lim g ( x ) =  - ~  
x,[.a~ x '~b~ 

We will give the proof only for the first of these relations; the second is 
completely analogous. 

From (3.3), 

abo~ < a~ 

and we start by considering the case 

abo~ < a~ 

Then, for sufficiently large n, 

abn-l < a~ <~ an 

But, as we noted above (in the case n = 1), if a,, v/: ab,,_ t, then q(an) 
= a n _  l" Combining this remark with the functional equation, we get that 

g(a,,) = aZg(q(a,,)) = o t 2 g ( a n _ l )  

for all sufficiently large n. Since g(a,,) > 0 for all n, it follows that 

lira g(an)= lim g ( x ) =  
n---> oo x,l,a ~ 

We now eliminate the hypothesis 

ab~ < a~ 

by showing that the alternative 

ab~ = a ~  

leads to a contradiction. Thus, suppose this latter equality holds. Then 

aa~  > b~ 

and hence, by an argument analogous to the one just given, 

lim g(x )  = - 

But, as xSa~ ,  a - l x ~ b ~ ,  so q ( x ) =  a2g(a- ix )  $ _ ~ .  This, however, even- 
tually contradicts the fact (3.1) that q(x)  > x for x < x0, and thus com- 
pletes the proof. �9 

To close this section, we show that, for a solution g(x)  obtained as 
outlined in Section 2 as a scaling limit of a circle map with golden ratio 
rotation number, a~  and b~ are necessarily infinite. 
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P r o p o s i t i o n  3.3. Let the hypotheses be as in Proposition 3.2, but 
suppose in addition that there is an increasing function f(x) with f(x + 1) 
= f (x)+1 and with rotation number o, such that (in the notation of 
Section 2 ) f , ( x )  converges to a-  lg(x) uniformly on compact sets in (a, b). 
Then aoo = - ~ ,  boo = + m, and convergence is uniform on compact sets 
in ( -  ~ ,  oo). 

Proof. If we can show that fn(x) converges to a - l g ( x )  uniformly on 
compact sets in (aoo, boo), it will follow from (2.7) that 

g ( x )  >1 ax  

on (a~,  boo). This bound, however, rules out the possibility that g(x) goes to 
- ~ for finite x; hence, it shows that b~ (and therefore also a~)  must be 
infinite. 

To prove uniform convergence on compact sets in (a~,  b~), it suffices, 
by an obvious induction argument, to prove it on compact sets in (a 1 , b 0. 

Recall (2.5B): 

f.+ I(X) = an" an-If.-l(a;-llf.(a; Ix)) 

What we want to show is that the left-hand side of this identity converges 
uniformly on compact sets in (al ,bl)  to a-lg(x); we do this by proving 
convergence of the right-hand side to ag(q(x)). Thus, let K be a compact 
set in (al ,bl) .  By the construction of the extension of g to (al ,bl) ,  a - l K  
and q(K) are both contained in (a,b). Let K I be a compact set in (a,b) 
containing both a - l K  and q(K) in its interior. For sufficiently large n, 
a~-1K is contained in K 1, so, from the uniform convergence of fn(x) to 
a-lg(x) on K1, it follows that q,(x)=-an-llf~(a~lx) converges uniformly 
on K to q(x). Similarly, qn(K) c K 1 for all sufficiently large n, so uniform 
convergence of the right-hand side of (2.5) on K follows from the uni- 
form convergence of f ,_  1 to a - l g  on K 1 . [] 

4. (B) IMPLIES (A) 

In this section, g(x) will denote a solution of (B) in the sense of Section 
3, i.e., a strictly decreasing function with g ( 0 ) =  1, defined on an interval 
(a,b) and satisfying conditions (1)-(4) of Section 3. Invoking Proposition 
3.2, we assume the g is maximally extended. As in Section 3, we let x 0 
denote the unique point is (a, b) where g(xo) = O. 

P r o p o s i t i o n  4.1. If g is differentiable, if g'(xo)=/: O, and if the 
domain (a, b) of g contains 1, then 

g(x) = ag( g(a -2x)) (A1) 

everywhere on (a, b). 
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Remarks. 1. The assumption that g ' ( x o ) ~  0 can be replaced by 
the assumption that, for some positive integer q, g is q times differentiable 
and g( q) ( xo) =/= O. (This extension seems, however, to be without practical 
interest.) 

2. We actually need differentiability only at the two points x 0 and 
O~ - 2 X  0 . 

3. It is not very satisfactory to have to assume explicitly that g is 
defined at 1. (Note, however, that, if g is not defined at 1, the right-hand 
side of (A1) is not defined at 0.) This assumption can be replaced by the 
weaker one that the right and left sides of (A1) have at least one point of 
definition in common, but it has not, so far, been possible to eliminate it 
completely. 

Proo f .  As in Section 3, we write 

q ( x )  - 

We also write 

r ( x )  - g( -2x) 

The functional equations (A1) and (B) can now be rewritten, respectively, 
a s  

g ( r ( x ) )  = c~g(x) (AI')  

g ( q ( x ) )  = aZg(x) (B') 

The obvious way for these equations to be consistent is to have 

q ( x )  = r ( r ( x ) )  

This identity is in fact a straightforward consequence of (B): 

r(r(x)) = g(~-2g(~-2x))= g(~-2g(~- '(~-~x)))  

= q(x) 
Note that, in this derivation, we have used (B) only at the point ~ - ix ,  so 
the identity holds for all x such that a - I x  E (a, b), i.e., for all x in the 
domain of q. 

We next argue that 

r (xo)  = x o 

To see this, we note that r is a decreasing function on [0, l] with r(0) = 1 
and so has exactly one fixed point in [0, 1]. This point is also fixed for 
q = r 2, and the only fixed point for q in (a, b) is x 0. [This argument is the 
only place where we need the assumption that g is defined at l.] 

Next: We differentiate (B) at x 0 and use q(Xo) = x o to get 

g ' (Xo)  =  2g'(xo)q'(xo) 
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and hence, since we are assuming g'(xo) ~ 0, 

q'(xo)  = a - ~  

Since q = r ~ and r(xo) = x o, 

(r'(Xo)) 2= q'(x0) = ~ -~  

so, since r is decreasing and a negative 

For  any x ~ (a, b), 

g(x )  = ~2g(q(x))  . . . . .  ~ . , g ( q , . ( x ) )  

Hence, as m goes to infinity, g(qm(x) )  goes to zero, so, since g is strictly 
decreasing, 

qm(x )  ~ x o 

We are first going to prove (A) assuming both x ~ (a, b) and r(x)  ~ (a, b); 
then show that the second assumption is automatic. With the two assump- 
tions, and using q = r 2, we get 

~ g ( r ( x ) )  = ~ m + , g ( q ~ ( r ( ~ ) ) )  = ~2~+ 'g (~ (q~(~ ) ) )  

We are going to show that 

lira a2"+~g(r (qm(x) ) )  = g ( x )  
m - - )  oo  

and hence that 

~g(~(~))  = g ( x )  

as desired. 
Write x~ for q~(x ) .  Then using g(xo) = O, 

~ ' ~ g ( r ( ~ m ) )  = ~ ~ ( X m )  - -  ~ o  ~ .  - -  XO 

On the other hand, by repeated application of (B), 

g(:~) = ~ m g ( X m )  = g (~ , . )  -- g(Xo)  . , ~ " ( X , .  -- ~o) 
X m - -  X 0 

and so 

lira a2m(xm - xo) = g ( x ) / g ' ( X o )  
m - ~  oo  

Combining this with (4. I) and using r'(xo) = a -  l, we get 

lira a 2m+ ~g(r(x,~)) = ag ' ( xo ) r ' ( xo )g (x ) /g ' (Xo)  = g ( x )  
D'I--> ~ 

This proves (A1) provided that both x and r (x )  are in the interval 
(a ,b)  on which g is defined. We now show that r maps this interval into 
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itself so the second condition is automatic. Suppose not. Then a and b must 
be finite and either a or b must be the image under r of some point in (a, b). 
For definiteness, assume that there is an x a ~ (a, b) with r(xa)  = a. Since r 
is decreasing, x 0 < xo < b. By what we have just shown, 

g ( x ) = a g ( r ( x ) )  for x 0 < x < x ~  

Let x approach x a from below. Then r ( x )  approaches a from above, so 
g ( r ( x ) )  approaches oc, so g ( x )  = a g ( r ( x ) )  approaches - oe. But this con- 
tradicts the assumption that x~ < b. �9 

S. (A) IMPLIES (S) 

As noted in Section l, Nauenberg (4) has shown that an analytic 
solution of 

g ( x )  = a g ( g ( a - 2 x ) ) ,  g ( a  -2) = a -2 (A) 

also satisfies (B). (His argument can actually be made to work assuming 
much less than analyticity.) We will prove here a complementary result, 
purely algebraic, showing that a solution of (A) on [0, 1] can be extended to 
a larger interval where it satisfies both (A) and (B). 

For this section, our assumptions will be that g is a strictly decreasing 
function defined on [0, 1], with g(0) = 1, satisfying (A) on [0, 1]. As always, 
we assume a < - 1. 

It  follows from (A1) with x = 0 that 

~-~ = g ( 1 )  

hence, that g ( 1 ) <  0; hence, that g vanishes somewhere on [0, 1]. As 
previously, we denote this point by x o. Note that the right-hand side of 
(A1) is defined for x up to a2x 0, so we can take it as defining an extension 
of g to [0, a2x0], and the extended function will still satisfy (A). We will 
from now on assume that this extension has been made. 

At this point, it makes very little sense to ask whether g satisfies 

the left-hand side is defined only for positive x and the right-hand side only 
for negative x. The only place where the two sides can be compared is at 0, 
and there (B) reduces to g (a  -2) = a -2, i.e., to (A2). The left-hand side of 
(B) can, however, be taken as defining g ( x )  for a x  0 < x < 0. (B) then holds, 
by definition, on that interval. It  is also possible to ask whether (i) (A1) 
holds for a x  0 < x < 0 or (ii) (B) holds for 0 < x < a2Xo . 

We are going to show, by straightforward verifications, that the 
answers to both questions are affirmative. Thus: Starting with a solution of 
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(A) defined only on [0, 1], we can extend, using the functional equations, to 
a function defined on [ax o, a2Xo] and satisfying both (A) and (B). 

Let aXo < x < 0; we want to show that 

g( g(  a - 2x) ) = a - ~g( x) 

The calculation is as follows: 

g( g(~-2x) ) = g(~2g(~_2g(~-3x))) (1) 

= ~g(8(~-2~g(~-~g(~-3~)))) (2) 

=~8(g(8(~-~8(~-~)))) 
= otS(OL - 1 (0/8( 8 ( 0 / -  2g (0r - 3X))))) 

= ~g(~-,( g( g(~-3~)))) (3) 

= a g ( a - 2 ( a g (  g ( a - 2 ( a - ' x ) ) ) ) )  

= a g ( a - 2 g ( a - ' x ) )  (4) 

= ~ - ' g ( x )  (5) 
Only the numbered steps are substantive; we now have to justify each of 
them. Steps (1) and (5) are just application of the definition of the extended 
g for negative values of its argument; all that has to be checked is that the 
argument is in [axo, 0), and this is immediate in each case. The other three 
steps each use 

aS( g(a  -2z)) = g(z)  ( a l )  

and it has to be checked in each case that the corresponding z is in [0, aZx0]. 
For step (4), z = a - I x ,  and it is immediate that this is in the appropriate 
interval. For step (3), z = g(a-3x) .  Since ax o < x < O, 

0 < a -3X ~< a-2Xo ,~ XO 

SO 

8(~-~x) ~[ 8(~-2Xo), 8(0)] cEo, 1] c Eo,~2xo ] 
[To see that 1 < a2Xo, recall that 

and thus a - 2  < Xo.] 
For step (2), 

g ( , ~ - ~ )  = ,~-~ > o = g ( x o )  

z =  g(~-2g(~-3x)) 
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From 

it follows that 

g( g(~ % ) )  = ~-'g(xo) = o 

g(~-2Xo) = Xo 

We have already verified that 

g(a-3x) E[g(o~-2Xo),l]=[Xo,1] 

Hence 

g( _2x0)l = 

as desired. 
The preceding calculation was used by Nauenberg in his proof that an 

analytic solution of (A) also satisfies (B). 
We next want to verify that 

g ( o L - 2 g ( o l - l x ) )  ~" OL--2g(x) for 0 < X < a2Xo 

The calculation is as follows: 

g(a-2g(a-lx)) = g(a-2(a2g(a-2g(a-2x)))) (1) 

= 2(g(  'x)))) 

= ~ - ' g ( g ( a - 2 x ) )  (2) 

= ~ lag(g(~-~x))  

= a-2g(x)  (3) 

Step (1) is just the definition of g (a - ix ) ;  step (3) is just (A1) applied at x. 
Step (2) is (A1) applied at g(a-2x);  we have to verify that this argument is 
in [0,a2x0]. But 0 < x < a2x0 so 0 < a-2x < x 0 so g(a-2x)  ~ [g(x0), g(0)] 
= [0, 1], as desired. 

One thing the preceding analysis does not show is that, if g is analytic 
on a complex neighborhood of [0, 1] (and hence defined for small negative 
x's), then our extension coincides with its analytic continuation. For this, 
we need the analytic part of Nauenberg's argument, which can be summa- 
rized as follows: Define 

~,(x) = ag(a-ag(a-'x)) 

wherever the right-hand side is defined (and in particular on [ax0, 0], where 
we used this function to extend g). The argument given above shows that 

g(x) = ag(,~-2g(a-~x)) (5.1) 
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for small negative x and hence (by analytic continuation) on a complex 
neighborhood of zero. The problem is to show that ~ and g agree near zero. 
This is done by showing that their Taylor series at zero coincide. There are 
two main steps: 

1. Suppose g ( x )  = 1 - ax  p + O ( x  p+l)  with a 4= 0. Then ~(x) has the 
same form, with the same constant a. This follows from the definition of 
together with the formula 

g , ( ~ - 2 )  = ~p 

which is easily deduced from (A). 
2. For j > p ,  by differentiating (A1) and (5.1) repeatedly, putting 

x = 0, and rearranging, one gets formulas for g(J)(0) and ~(#~(0) in terms of 
lower-order derivatives and derivatives of g at 1. From these expressions, it 
follows by induction o n j  that ~(J)(0) = g(J)(O) f o r j  = p  + 1, p + 2 . . . . .  It 
also follows, incidentally, that g(J)(0) = 0 unless j is a multiple of p, i.e., that 
g is an analytic function of x p. 
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